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Abstract  
The Lamb shifts of  the $1/2 and P1/2 states of  hydrogen atoms are calculated using the  
Sachs e lementary interact ion theory.  Both $1/2 and P1/2 levels are shifted with respect  
to the  Dirac levels by energies o f  the  same order of  magnitude.  Agreement  with experi- 
ment  is obtained for the 2S1/2 - 2P1/2 and 3S~/2 - 3P1/2 Lamb shifts, bu t  the predicted 
IS1/2 - 2391/2 Lamb shift t e rm of  12,164 MHz is in disagreement with the  exper imental  
value o f  7860 + 1140 MHz. 

1. In troduct ion 

According to the Dirac theory for hydrogenic atoms, the ns1/2 and n-P1~ 2 
energy levels are degenerate. Lamb and Retherford (1947) demonstrated by 
microwave methods that the 2S1/2 level was displaced upwards relative to the 
2P1/2 level by a small amount of the order of 1000 MHz. Subsequent experi- 
ments (Triebwasser et  al., 1953) have yielded extremely accurate values for 
the Lamb shifts. 

In quantum electrodynamics, the Lamb shift is caused by the interaction 
of the electron with the zero-point vibrations of the radiation field [Bethe 
1947; Weisskopf, 1949]. This interaction is different for free and bound elec- 
trons, and is greatest for S states and very small for P, D . . . .  states. 

The quantum electrodynamic formula for the S state shift is (Herzberg, 
1956) 

AE(n, 0) - 8Z4°t~3 ( 1 - - ~ )  [In mc2 
- 3rm3 R~ 2k0(n, 0) 

19 t4 , )] - -  + - -  + 3zrZa _ 1 in 2 
30 \384 2 

(1.1) 

where n = principal quantum number,Z = nuclear charge, a = fine structure 
constant, m = electronic mass, M = nuclear mass, R~ = Rydberg constant, for 
infinite mass, and ko(n ,  0) an average excitation energy, having the value 
1 6 . 6 4 6 R = h c  for the 2S1/; state, and 19.76967 R ~ h c  for the 1S1/2 state. 
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For P states, the shift is (Bethe et al., 1949) 

8Z4a3 ( 3m'[  R~hc 3 ct] ] 
z X E ( n , l ) = ~ R ~  1 - ~ - )  [ln k - ~ , } )  + ~ 2/+ 1 

where 
1 1 

Cli = / - ~  for ] = l + --2 

1 1 
= - -- for] = l - --  (1.2) 

l 2 

and ko(2, 1) = .9704 hc. 
Equations (1.t)  and (1.2) result from a calculation where there are divergent 

integrals, which are removed by appealing to renormalization schemes and ex- 
ternal physical constraints such as gauge invariance. 

Sachs (1971a, b; 1972a, b) has formulated a theory of elementary matter 
in which the Lamb shift is the result of a small finite modification of the 
Coulomb potential between electron and nucleus. His elementary interaction 
theory has Lorentz invariance built in from the initial axioms, and there are 
no divergent integrals in the calculations. A new fundamental constant of 
length, gM, results from including explicitly the matter field variables included 
in the electromagnetic quantities p and]. In the explicit calculation of the Lamb 
shift in hydrogen (Sachs, 1972b), the ratio ~(3S1/2 - 3P1/2)/A(2Sl/2 - 2P:/2) 
is found to be in agreement with experiment, independent of the value otg m. 
The experimental result for A(2S:/2 - 2P:/2) is then used to fix the value of 
gM. The calculation has only been performed for those Lamb shifts between 
$1/2 and P1/2 states corresponding to the same principal quantum number, 
and both A(2S~/2 -- 2P1/2) and A(3S1/2 -- 3P1/2) agree with experiment. 

In this paper, we use the elementary interaction theory to calculate the 
shifts of $1/2 and P1/2 levels from the corresponding Dirac levels. We find 
that the two shifts are of the same order of magnitude, unlike in quantum 
electrodynamics where the shift of the $1/2 level is much greater than that of 
the P1/2 level. From these shifts we calculate the Lamb shift term A(nS1/2 -- 
mPl/2) for a general n, m(n 4: m). The particular case A(1S1/2 - 2Pt/2) is in 
conflict with the experimental result of Herzberg (1956). 

2. Calculation of the Lamb Shift 

Using the notation of Sachs (1972b)we consider the solution of the coupled 
equations 

(3'u0 u - I(p) + X)~ (e) = 0 (2.1) 

(?'•a" + I(e)+ A)~ (0) = 0 (2.2) 

where 3', are the Dirac matrices, X, A are the reciprocal Compton wavelengths 
for electron and proton respectively, and I describes the interaction potential 
between proton and electron. 
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Equations (2.1) and (2.2) are nonlinear equations; however, assuming both 
a point proton and a negligible momentum transfer from electron to proton, 
the coupled equations can be reduced to the following linearized form (Sachs, 
1972b) 

(17[ 0 + ffr)~y(e) = i E  ~y(e) ( 2 . 3 )  
77 

where Ho is the unperturbed Dirac Hamiltonian for the hydrogen atom, and 

where 

K = 

p = -iK O x c03 
p2 p 

16zr ( ~ c )  a2 
[(s+ n -  1)] 2 +c¢ 2 

is a measure of the strength of the interaction I(p). Xc is the reduced Compton 
wavelength, h/mc,for the electron, and gM the fundamental length constant. 

The potential V lacks reflection symmetry in both space and time by virtue 
of the outer product, and so will lift the accidental degeneracy in the eigen- 
states o fH  o. In his solution of (2.3), Sachs solves 

where 

and 

(Hol + V1)@(e ) = i E  ~(e) 
7/ 

KCCp 
Ho I = Ho - p2 

V I = ~r+ KC¢O 
02 (2.4) 

The shifts of the $1/2 and P1/2 levels from the Dirac levels will be given by 
($1/21 iV 1 ISI/2) and (P1/21 iV 1 tPt/2), where IS1/2) and t P1/2) are given by 
[SD,1/2) exp (--K/p) and I PD,I/2) exp (--K/p). Substituting the explicit expres- 
sions for the Dirac eigenfunctions (Bethe and Salpeter, 1957) 

1ns1/2) = ~ - i  0 exp (-K/p) (2.5) 

\ - i  sin 0 exp (N))G-(n- 1)// 
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/COS 00 F exp +(n(ic~)F+(n - 1) _ 1 )  
= [ s i n  exp (--K/p) (2.6) 

I np1/2) ~otG+(n 1) 

where nF+_/p and nG+_/p are respectively the large and small parts of the solu- 
tions of the radial Dirac equation, and n is the principal quantum number, the 
matrix elements are readily evaluated. We obtain 

64n (gM]a4(mc2) ll_,n_ l ] (l ns1 /2 l i~r l lnS1 /2 )  = 3[(S + n _-- ~')2 + a2] ~ Xc] 

(2.7) 

and 
64rr {gM]a4(mc2)I+,rn_l (2.8) (mp1/2l il"llrnp1/2) = 3[(s + m -- i-) 2 + a 2 ] ~Xc] 

where 

( Fe(n - 1)G+(n - 1) 
I+_,n--1 ~ a j  02 exp ( -  2K/p) dp (2.9) 

o 
The integrals I+_ are evaluated in terms of modified Bessd functions (Sachs, 
1972b) and numerical values given in Table 1. Combining (2.7) and (2.8) we 
obtain the values for the Lamb shift term for the transition nst/2 -~ raP1~ 2 as 

64rr [gM t [_1/-,n- 11 I+'my21 1 A(ns1/2 -- mp1/2)= 3 ~Xc ] a4(mc2) (2.10) L ( s + n - 1 )  2 ( s + m -  1) 2] 

The constant gM in (2.10) is obtained from the experimental result A(2S1/2 
2P1/2) = 1057.77 MHz (Triebwasser et at., 1953), yielding gM = 2.087 X 
10 -14 cm. 

The result (2.10) can be considered as an upper limit to any particular 
Lamb shift. If the point proton approximation were not applicable the proton 
field is sprea d over a finite volume of space and the matrix elements would be 
smaller. This reduction would apply particularly to the matrix element 
(1S1/2 liPlt 1S1/2). 

TABLE 1. Integrals of the form I+n - 1 

n I + , n - 1  I - , n - 1  

I 0 - I  
2 1/6 - 2  
3 I/9 - 3  
4 t/12 - 4  
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3. Discussion 

From equations (1.1) and (1.2), the shifts of the 2S1/2 and 2p1/2 states 
from the Dirac level are 1044.83 MHz and -12.85 MHz, ignoring all correc- 
tions of0/s and higher. The 1S1/2 Lamb shift is 8172 MHz, and so the Lamb 
shift term in A(1S1/2 -- 2P1/2) is 8185 MHz to fourth order in 0/, according 
to quantum electrodynamics. 

With the elementary interaction theory the IS1/2 - 2Pw2 Lamb shift is 
obtained by putting n = 0, m = 1 into (2.t0), yielding 

6 4 ( ~ ) a 4 ( m c 2 ) l [ ! " ~ ° [ - ~ ]  0(0l 6) (3.1) A ( 1 S 1 / 2  __ 20  , "t I / 2 ) = T  , - -  ~ - + 

N o w / + , 1  = l , I - , o  = - 1  f r o m  Tab le  1, so 

647r ( ~ )  [23] 
A(1S1/2  --  2 p 1 / 2 )  = T 0/4(mc2) ~-~ (3.2) 

Now gM is eliminated from (3.2) by setting A(2S1/2 - 2P1/2) equal to the 
experimental value of 1057.77 MHz. The final result is 12,164 MHz for 
zX(ISt/2 - 2Pvz ). 

Direct comparison with experiment for hydrogen is impossible. Herzberg 
(1956) measured the Lamb shift A(2P - 1S1/2) in deuterium to be 7860 MHz, 
with upper and lower values of A being 9010 MHz and 4830 MHz. The very 
low value of the lower bound assumes that the weak-absorption assumption 
made by Herzberg was invalid. Since, according to quantum etectrodynamics, 
the P level is only shifted by a small amount, the failure of Herzberg to resolve 
the 2P3/2 and 2Pa/2 states only meant that separate values for A(2P3/2 - -  1S1/2)  
and A(EpI/2 -- 1S1/2) could not be obtained, but that (2p _ 1S1/2 ) was a 
good approximation for either shift. 

If the point nucleus approximation used in the derivation of (2.10) were 
valid, the elementary interaction result for deuterium would be altered only in 
the factor Xc appearing in (2.10), yielding a result of 12,170 MHz for the shift 
A(2P1/2  - -  t S 1 / 2 )  in deuterium. 

The considerable discrepancy between theory and experiment could be traced 
to the failure of the point-nucleus linear approximation used in the derivation 
of (2.10) for the case of the 1S I/2 shift. In addition, the elementary interac- 
tion theory predicts that the $1/2 states are shifted by an energy given by (2.7) 
and that the P1/2 states have an energy shift given by (2.8). For n 4= 1, where 
the point nucleus approximation should be valid, these shifts are of the same 
order of magnitude e.g., for n = 2, (2S1/21i (zl 12S1/2) = 1586,66 MHz and 
(2pI/2 liV 112p1/2) = 528.89 MHz unlike the quantum electrodynamic prediction 
of a very small Pa/2 shift. Thus discrepancies with quantum electrodynamics 
are not confined to n = 1 states. 

To make the predictions of the elementary interaction theory consistent with 
experiment for both the 1S1/2 - 2P1/2 and the 2S1/2 - 2P1/2 Lamb shifts, 
the matrix element (P1/2[ifZll P1/2) must be set equal to zero (at least to fourth 
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order in a) either by modificat ion of  the perturbing Hamiltonian iV, or by 
appeal to some symmetry  proper ty  of  the atomic system. I f  this should be poss- 
ible, the value of  the fundamental  constant  gM would be determined by  the 
equating o f  (2SI/21iV112S1/2) and the experimental  value of  the 2S1/2 - 2p1/2 
Lamb shift. F rom this we would find g ~  = 1.391 x 10 - l a  cm and (1S1/2 - 
2P1/2) = 8462 MHz. 

A determinat ion ofgM, independent  of  the Lamb shift, can be obtained 
from the observed minimum in the elastic scattering cross-section of the e - 
He 4 system. (Sachs, 1968, Frosch et al., 1967). Fit t ing the zero of  the calcu- 
lated equivalent form factor e(g) to the observed minimum cross-section at 
q = 3.2 x 10 -13 cm -1 yields a value o f g  M of  3.19 x 10 -14 cm from scattering 
data. Thus we cannot  use the present scattering experiments to resolve the 
1S1/2 Lamb shift discrepancy by a mere modificat ion of  the magnitude o f  the 
fundamental  constant  gM- 
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